Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 64(13): 9238-9258, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34008974

RESUMO

The inhibition of the nuclear receptor retinoic-acid-receptor-related orphan receptor γt (RORγt) is a promising strategy in the treatment of autoimmune diseases. RORγt features an allosteric binding site within its ligand-binding domain that provides an opportunity to overcome drawbacks associated with orthosteric modulators. Recently, trisubstituted isoxazoles were identified as a novel class of allosteric RORγt inverse agonists. This chemotype offers new opportunities for optimization into selective and efficacious allosteric drug-like molecules. Here, we explore the structure-activity relationship profile of the isoxazole series utilizing a combination of structure-based design, X-ray crystallography, and biochemical assays. The initial lead isoxazole (FM26) was optimized, resulting in compounds with a ∼10-fold increase in potency (low nM), significant cellular activity, promising pharmacokinetic properties, and a good selectivity profile over the peroxisome-proliferated-activated receptor γ and the farnesoid X receptor. We envisage that this work will serve as a platform for the accelerated development of isoxazoles and other novel chemotypes for the effective allosteric targeting of RORγt.


Assuntos
Isoxazóis/farmacologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/agonistas , Sítio Alostérico/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Isoxazóis/síntese química , Isoxazóis/química , Ligantes , Modelos Moleculares , Estrutura Molecular , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Relação Estrutura-Atividade
2.
ACS Med Chem Lett ; 12(4): 631-639, 2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33854703

RESUMO

The nuclear receptor RORγt is a key positive regulator in the differentiation and proliferation of T helper 17 (Th17) cells and the production of proinflammatory cytokines like IL-17a. Dysregulation of this pathway can result in the development of various autoimmune diseases, and inhibition of RORγt with small molecules thus holds great potential as a therapeutic strategy. RORγt has a unique allosteric ligand binding site in the ligand binding domain, which is distinct from the canonical, orthosteric binding site. Allosteric modulation of RORγt shows high potential, but the targeted discovery of novel allosteric ligands is highly challenging via currently available methods. Here, we introduce covalent, orthosteric chemical probes for RORγt that occlude the binding of canonical, orthosteric ligands but still allow allosteric ligand binding. Ultimately, these probes could be used to underpin screening approaches for the unambiguous and rapid identification of novel allosteric RORγt ligands.

3.
ACS Chem Biol ; 16(3): 510-519, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33596047

RESUMO

The RORγt nuclear receptor (NR) is of critical importance for the differentiation and proliferation of T helper 17 (Th17) cells and their production of the pro-inflammatory cytokine IL-17a. Dysregulation of RORγt has been linked to various autoimmune diseases, and small molecule inhibition of RORγt is therefore an attractive strategy to treat these diseases. RORγt is a unique NR in that it contains both a canonical, orthosteric and a second, allosteric ligand binding site in its ligand binding domain (LBD). Hence, dual targeting of both binding pockets constitutes an attractive alternative molecular entry for pharmacological modulation. Here, we report a chemical biology approach to develop a bitopic ligand for the RORγt NR, enabling concomitant engagement of both binding pockets. Three candidate bitopic ligands, Bit-L15, Bit-L9, and Bit-L4, comprising an orthosteric and allosteric RORγt pharmacophore linked via a polyethylene glycol (PEG) linker, were designed, synthesized, and evaluated to examine the influence of linker length on the RORγt binding mode. Bit-L15 and Bit-L9 show convincing evidence of concomitant engagement of both RORγt binding pockets, while the shorter Bit-L4 does not show this evidence, as was anticipated during the ligand design. As the most potent bitopic RORγt ligand, Bit-L15, antagonizes RORγt function in a potent manner in both a biochemical and cellular context. Furthermore, Bit-L15 displays an increased selectivity for RORγt over RORα and PPARγ compared to the purely orthosteric and allosteric parent compounds. Combined, these results highlight potential advantages of bitopic NR modulation over monovalent targeting strategies.


Assuntos
Colesterol/química , Colesterol/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/agonistas , Polietilenoglicóis/química , Sítio Alostérico , Diferenciação Celular , Humanos , Interleucina-17/metabolismo , Ligantes , Modelos Moleculares , Ligação Proteica , Conformação Proteica
4.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33536342

RESUMO

Cooperative ligand binding is an important phenomenon in biological systems where ligand binding influences the binding of another ligand at an alternative site of the protein via an intramolecular network of interactions. The underlying mechanisms behind cooperative binding remain poorly understood, primarily due to the lack of structural data of these ternary complexes. Using time-resolved fluorescence resonance energy transfer (TR-FRET) studies, we show that cooperative ligand binding occurs for RORγt, a nuclear receptor associated with the pathogenesis of autoimmune diseases. To provide the crucial structural insights, we solved 12 crystal structures of RORγt simultaneously bound to various orthosteric and allosteric ligands. The presence of the orthosteric ligand induces a clamping motion of the allosteric pocket via helices 4 to 5. Additional molecular dynamics simulations revealed the unusual mechanism behind this clamping motion, with Ala355 shifting between helix 4 and 5. The orthosteric RORγt agonists regulate the conformation of Ala355, thereby stabilizing the conformation of the allosteric pocket and cooperatively enhancing the affinity of the allosteric inverse agonists.


Assuntos
Regulação Alostérica/genética , Descoberta de Drogas , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Conformação Proteica/efeitos dos fármacos , Sítio Alostérico/efeitos dos fármacos , Sítio Alostérico/genética , Sítios de Ligação/genética , Fenômenos Biofísicos , Cristalografia por Raios X , Humanos , Ligantes , Conformação Molecular , Simulação de Dinâmica Molecular , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/química , Ligação Proteica/genética
5.
ChemMedChem ; 15(7): 561-565, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32053744

RESUMO

The demand for allosteric targeting of nuclear receptors is high, but examples are limited, and structural information is scarce. The retinoic acid-related orphan receptor gamma t (RORγt) is an important transcriptional regulator for the differentiation of T helper 17 cells for which the first, and some of the most promising, examples of allosteric nuclear receptor modulation have been reported and structurally proven. In a 2015 patent, filed by the pharmaceutical company Glenmark, a new class of small molecules was reported that act as potent inverse agonists for RORγt. A compound library around the central thienopyrazole scaffold captured a clear structure-activity relationship, but the binding mechanism of this new class of RORγt modulators has not been elucidated. Using a combination of biochemical and X-ray crystallography studies, here the allosteric mechanism for the inverse agonism for the most potent compound, classified in the patent as "example 13", is reported, providing a strongly desired additional example of allosteric nuclear receptor targeting.


Assuntos
Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/agonistas , Pirazóis/farmacologia , Regulação Alostérica/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/isolamento & purificação , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Pirazóis/síntese química , Pirazóis/química
6.
J Med Chem ; 63(1): 241-259, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31821760

RESUMO

Retinoic acid receptor-related orphan receptor γt (RORγt) is a nuclear receptor associated with the pathogenesis of autoimmune diseases. Allosteric inhibition of RORγt is conceptually new, unique for this specific nuclear receptor, and offers advantages over traditional orthosteric inhibition. Here, we report a highly efficient in silico-guided approach that led to the discovery of novel allosteric RORγt inverse agonists with a distinct isoxazole chemotype. The the most potent compound, 25 (FM26), displayed submicromolar inhibition in a coactivator recruitment assay and effectively reduced IL-17a mRNA production in EL4 cells, a marker of RORγt activity. The projected allosteric mode of action of 25 was confirmed by biochemical experiments and cocrystallization with the RORγt ligand binding domain. The isoxazole compounds have promising pharmacokinetic properties comparable to other allosteric ligands but with a more diverse chemotype. The efficient ligand-based design approach adopted demonstrates its versatility in generating chemical diversity for allosteric targeting of RORγt.


Assuntos
Isoxazóis/farmacologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/agonistas , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Reação de Cicloadição , Desenho de Fármacos , Agonismo Inverso de Drogas , Isoxazóis/síntese química , Isoxazóis/metabolismo , Ligantes , Camundongos , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Relação Estrutura-Atividade
7.
Mol Cell Endocrinol ; 485: 20-34, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30703487

RESUMO

Nuclear Receptors (NRs) are multi-domain proteins, whose natural regulation occurs via ligands for a classical, orthosteric, binding pocket and via intra- and inter-domain allosteric mechanisms. Allosteric modulation of NRs via synthetic small molecules has recently emerged as an interesting entry to address the need for small molecules targeting NRs in pathology, via novel modes of action and with beneficial profiles. In this review the general concept of allosteric modulation in drug discovery is first discussed, serving as a background and inspiration for NRs. Subsequently, the review focuses on examples of small molecules that allosterically modulate NRs, with a strong focus on structural information and the ligand binding domain. Recently discovered nanomolar potent allosteric site NR modulators are catapulting allosteric targeting of NRs to the center of attention. The obtained insights serve as a basis for recommendations for the next steps to take in allosteric small molecular targeting of NRs.


Assuntos
Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Regulação Alostérica/efeitos dos fármacos , Sítio Alostérico , Sítios de Ligação , Desenho de Fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Ligantes
8.
ACS Chem Neurosci ; 9(11): 2639-2654, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29722962

RESUMO

Current molecular hypotheses have not yet delivered marketable treatments for Alzheimer's disease (AD), arguably due to a lack of understanding of AD biology and an overreliance on conventional drug modalities. Protein-protein interactions (PPIs) are emerging drug targets, which show promise for the treatment of, e.g., cancer, but are still underexploited for treating neurodegenerative diseases. 14-3-3 binding to phosphorylated Tau is a promising PPI drug target based on its reported destabilizing effect on microtubules, leading to enhanced neurofibrillary tangle formation as a potential cause of AD-related neurodegeneration. Inhibition of 14-3-3/Tau may therefore be neuroprotective. Previously, we reported the structure-guided development of modified peptide inhibitors of 14-3-3/Tau. Here, we report further efforts to optimize the binding mode and activity of our modified Tau peptides through a combination of chemical synthesis, biochemical assays, and X-ray crystallography. Most notably, we were able to characterize two different high-affinity binding modes, both of which inhibited 14-3-3-binding to full-length PKA-phosphorylated Tau protein in vitro as measured by NMR spectroscopy. Our findings, besides producing useful tool inhibitor compounds for studying 14-3-3/Tau, have enhanced our understanding of the molecular parameters for inhibiting 14-3-3/Tau, which are important milestones toward the establishment of our 14-3-3 PPI hypothesis.


Assuntos
Proteínas 14-3-3/metabolismo , Doença de Alzheimer/metabolismo , Emaranhados Neurofibrilares/metabolismo , Proteínas tau/metabolismo , Proteínas 14-3-3/química , Cristalografia por Raios X , Descoberta de Drogas , Humanos , Espectroscopia de Ressonância Magnética , Microtúbulos/metabolismo , Fosforilação , Ligação Proteica , Proteínas tau/química
9.
J Am Soc Nephrol ; 29(5): 1525-1535, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29476007

RESUMO

Background Interpreting genetic variants is one of the greatest challenges impeding analysis of rapidly increasing volumes of genomic data from patients. For example, SHROOM3 is an associated risk gene for CKD, yet causative mechanism(s) of SHROOM3 allele(s) are unknown.Methods We used our analytic pipeline that integrates genetic, computational, biochemical, CRISPR/Cas9 editing, molecular, and physiologic data to characterize coding and noncoding variants to study the human SHROOM3 risk locus for CKD.Results We identified a novel SHROOM3 transcriptional start site, which results in a shorter isoform lacking the PDZ domain and is regulated by a common noncoding sequence variant associated with CKD (rs17319721, allele frequency: 0.35). This variant disrupted allele binding to the transcription factor TCF7L2 in podocyte cell nuclear extracts and altered transcription levels of SHROOM3 in cultured cells, potentially through the loss of repressive looping between rs17319721 and the novel start site. Although common variant mechanisms are of high utility, sequencing is beginning to identify rare variants involved in disease; therefore, we used our biophysical tools to analyze an average of 112,849 individual human genome sequences for rare SHROOM3 missense variants, revealing 35 high-effect variants. The high-effect alleles include a coding variant (P1244L) previously associated with CKD (P=0.01, odds ratio=7.95; 95% CI, 1.53 to 41.46) that we find to be present in East Asian individuals at an allele frequency of 0.0027. We determined that P1244L attenuates the interaction of SHROOM3 with 14-3-3, suggesting alterations to the Hippo pathway, a known mediator of CKD.Conclusions These data demonstrate multiple new SHROOM3-dependent genetic/molecular mechanisms that likely affect CKD.


Assuntos
Proteínas dos Microfilamentos/genética , Insuficiência Renal Crônica/genética , Alelos , Animais , Núcleo Celular , Frequência do Gene , Loci Gênicos , Células HEK293 , Humanos , Camundongos , Mutação de Sentido Incorreto , Podócitos , Isoformas de Proteínas/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Transcrição Gênica , Peixe-Zebra
10.
ACS Chem Neurosci ; 8(9): 2065-2077, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28691794

RESUMO

Retinoid X receptors (RXRs) play key roles in many physiological processes in both the periphery and central nervous system. In addition, RXRs form heterodimers with other nuclear receptors to exert their physiological effects. The nuclear receptor related 1 protein (NURR1) is particularly interesting because of its role in promoting differentiation and survival of dopamine neurons. However, only a small number of RXR-heterodimer selective modulators are available, with limited chemical diversity. This work describes the synthesis, biochemical evaluation, and structural elucidation of a novel series of RXR ligands with strongly biased interactions with RXRα-NURR1 heterodimers. Targeted modifications to the small molecule biaryl scaffold caused local RXRα side-chain disturbances and displacement of secondary structural elements upon ligand binding. This resulted in the repositioning of protein helices in the heterodimer interface of RXRα, alterations in homo- versus heterodimer formation, and modulation of activation function 2 (AF2). The data provide a rationale for the design of RXR ligands consisting of a highly conserved hydrophilic region, strongly contributing to the ligand affinity, and a variable hydrophobic region, which efficiently probes the effects of structural changes at the level of the ligand on co-regulator recruitment or the RXRα-NURR1 dimerization interface.


Assuntos
Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/química , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Receptor X Retinoide alfa/química , Receptor X Retinoide alfa/metabolismo , Desenho de Fármacos , Escherichia coli , Ésteres/química , Éteres/química , Humanos , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Estrutura Molecular , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/agonistas , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/antagonistas & inibidores , Ligação Proteica , Multimerização Proteica , Receptor X Retinoide alfa/agonistas , Receptor X Retinoide alfa/antagonistas & inibidores , Técnicas do Sistema de Duplo-Híbrido
11.
Proc Natl Acad Sci U S A ; 113(9): E1152-61, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26888287

RESUMO

Cystic fibrosis is a fatal genetic disease, most frequently caused by the retention of the CFTR (cystic fibrosis transmembrane conductance regulator) mutant protein in the endoplasmic reticulum (ER). The binding of the 14-3-3 protein to the CFTR regulatory (R) domain has been found to enhance CFTR trafficking to the plasma membrane. To define the mechanism of action of this protein-protein interaction, we have examined the interaction in vitro. The disordered multiphosphorylated R domain contains nine different 14-3-3 binding motifs. Furthermore, the 14-3-3 protein forms a dimer containing two amphipathic grooves that can potentially bind these phosphorylated motifs. This results in a number of possible binding mechanisms between these two proteins. Using multiple biochemical assays and crystal structures, we show that the interaction between them is governed by two binding sites: The key binding site of CFTR (pS768) occupies one groove of the 14-3-3 dimer, and a weaker, secondary binding site occupies the other binding groove. We show that fusicoccin-A, a natural-product tool compound used in studies of 14-3-3 biology, can stabilize the interaction between 14-3-3 and CFTR by selectively interacting with a secondary binding motif of CFTR (pS753). The stabilization of this interaction stimulates the trafficking of mutant CFTR to the plasma membrane. This definition of the druggability of the 14-3-3-CFTR interface might offer an approach for cystic fibrosis therapeutics.


Assuntos
Proteínas 14-3-3/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Proteínas 14-3-3/química , Sequência de Aminoácidos , Sítios de Ligação , Calorimetria , Regulador de Condutância Transmembrana em Fibrose Cística/química , Modelos Moleculares , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...